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In this article, a recursive algorithm using the error-trellis decoding technique is devel-
oped to decode convolutional codes (CCs). An example, illustrating the VLSI architecture
of such a decoder, is given for a dual-K CC. It is demonstrated that such a decoder can be
realized readily on a single chip with NMOS technology.

I. Introduction

Recently, the authors (Refs. 1, 2) developed a new error-
trellis syndrome decoding scheme for convolutional codes
(CCs). This new method involves finding minimum-error paths
in an error-trellis. It was shown (Ref. 1) that the computation
of the error-trellis is accomplished by finding the solution of
the syndrome equations explicitly in terms of the actual error
sequence. This syndrome decoding scheme was then applied to
a rate 3/4, one-error-correcting systematic Wyner-Ash code
(Refs. 4, 5).

In this article, the error-trellis decoding is applied to decode
a rate 1/n, dual-K nonsystematic CC. The special example Of a
rate 1/2, dual-3 nonsystematic CC is treated in this article.

It is demonstrated in Ref. 6 and this article that the real
advantage of error-trellis decoding over Viterbi decoding of
CCs is the reduction of the number of states and transitions
between any two frames. A recursive algorithm for finding the
path of minimum error in the error-trellis is found which
realizes a rate 1/2, dual-3 nonsystematic CC. This recursive
algorithm eliminates all paths in certain fixed frames except
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the path with minimum error. A VLSI chip architecture is
developed to realize this new recursive algorithm for decoding
the dual-K CC. The designs developed for this decoder are
regular, simple, expandable and, therefore, naturally suitable
for VLSI implementation.

Il. The Properties of Convolutional Codes

In this section a brief review is presented of properties of
CCs needed in the following sections.

The input X to a k-dimensional CC encoder is represented
as an infinite sequence of vectors, X;, of form,

X = [X,X,X,,...] (1)
where X]- = [xll., Xyjy e ,X;.:] is a k-component vector of
elements from the Galois field GF(q), where ¢ =p" with
p a prime integer. Each vector X; of k symbols for (=0,1,
2,...) is sometimes called an information or input frame (see
Ref. 4, Sec. 12.1). Similarly, the output ¥ of a CC of length n
is an infinite sequence of vectors, Y]., of form



Y=1Y,Y.,Y,,...] )
where Y, = [ylj, Vajs s yn].] is an n-component vector of

elements from GF(q). Here vector Y, is called a codeword
frame or more simply, a code frame (Ref. 4, Sec. 12.1).

In a CC encoder the input X in Eq. (1) and output in
Eq. (2) are linearly related; hence there exists what is called an

infinite generator matrix G such that

Y=x-G &)

For the CC to have finite memory, G has the form

Gy G, G, ... G, 7]
G, G, G, ...G_
G = (42)
i Gy G, G, ... G, ]|

where the submatrices G]- are k X n matrices of form

G =G

] (4b)
and the elements G, ; belong to GF(q) for 1 Sr<k,1<s<n
and 0 <j < m. Multiplying the subvectors of xin Eq. (1) by
the matrix G in Eq. (4a) yields, by Eq. (3), the fundamental
identity,

min(j,m)
Y, = E X -G, (5)
i=0
which is the convolution of sequence {X,,X,, ...} of infor-
mation frames with the sequence {G,,G,,...,G,}of

matrix operators. The integer m in Eq. (4a) is the memory of
the convolution Eq. (5). The value of m is the maximum
number of past input frames X; needed to compute Eq. (5),
recursively.

The convolution property (Eq. [5]) of finitely generated
CCs can be realized conveniently for some applications by the
operational calculus over a finite field GF(g). To accomplish
this one defines first the generating functions or, what are
sometimes called, the D-transform of the sequences {X]. 1,
and the {G]-} and {Yj} matrices, as follows:

X)) = YZ X].Df (6a)

=0

m

gD) =Y 6D (6b)
j=0
and
Y(D) = Z Yl.Df (6¢)
j=0

where D is an operator variable. It is not difficult to verify that
by equating the coefficients in the matrix relationship

Y(D) = X(D) - G(D) (7)

the fundamental convolution property (Eq. [5]) of a convolu-
tional code of memory m is derived. Hence identity (Eq. [7])
is precisely equivalent to the defining relationship (Eq. [3]) of
a convolutional code. Finally if D is identified with a unit
delay circuit element, it is not difficult to show that G(D)
maps directly onto an encoder circuit diagram.

By Eq. (5) the jth output of an n-vector or codeword
frame, Y, is dependent on at most the m + 1 present and past
input k-vectors or information frames. Hence it is natural (as
suggested by Blahut {Ref. 4, Section 12.1]) to define

k= (m+1)k (82)

to be the word length of the CC. Then the word length £, is
extended by the encoding process of Eq. (5) to, what is called,
the block length n; of the CC. The block length of CC is

k,
n, =(m+l)-n=? (8b)

where R =k/n is the rate of the code. By Eq. (5) the block
length n, =(m+ 1) n is the length of the subsequence of ¥
which, during encoding, can be influenced by a single infor-
mation frame.

The minimum distance of the code is interpreted to be the
Hamming weight of the smallest weight code word segment of
€=m+1 which is nonzero in the first frame. Suppose for
some CC that at most ¢ errors occur during transmission in

the first € code word frames, and that
2t+1<d

is satisfied by the code. Then those errors which occur in the
first block length of CC can be corrected using feedback:
decoding. Such a CC is called a t-error-per-block-length-
correcting CC or more simply a t-error-correcting CC (Ref. 4,
Sec. 12.3).
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Another distance between code words of a CC which is
commonly used is the free distance d .,
free = Mmin W (X(D)- G(D))

X (D)#0
Since clearly, d < d;.. (Ref. 4), designing a CC with minimum
distance d guarantees that the code has a free distance of d or
greater.

To find the minimum distance d of a CC, either the follow-
ing k; X n, submatrix is used

GO 1 2 m
0 1 m-1
G = ’ . (9)
* Gy G
— 0 =

where k; =(m + 1) k and n; =(m + 1) n, or its corresponding
parity check matrix H. The techniques used to find the mini-
mum distance for block codes apply also for finding d using
matrix G in Eq. (9) or the associated parity-check matrix H.
Sometimes (see Ref. 4, Sec. 3.3) matrix G in Eq. (9) is called
the basic generator matrix of the CC.

lil. Error-Trellis Decoding

In this section error-trellis decoding as developed in Refs. 3
and 6 is reviewed briefly. First in order to avoid catastrophic
error propagation the D-transform G(D) in Eq. (6b) is
restricted to have the Smith normal form

G(D) = A(D) [1,,0] B(D) (10)

where A =A(D) and B = B(D) are, respectively, k X k and
n X n invertible matrices with elements in F[D], the ring of
polynomials in D over GF(g). The elements of the inverses
A-" and B~! of matrices 4 and B, respectively, are also in
F[D] or are polynomials in D. For descriptive brevity the
D-transform G(D) is called the generator matrix.

If B=B(D) in Eq. (10), let

B = [B,,B)) " and B = [B,B,] (11)

where the first k£ rows of B constitute submatrix B, and the
remaining n - k rows are B,. Similarly the first k£ columns of
B~1 constitute submatrix B, and the other n -k columns
are B,. It was shown (Refs. 1, 2, 6) that
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G-H'(D)=G-B, =0 (12)
where H(D) is a parity-check matrix for G(D).

Let Z(D)=[Z,(D), ..., Z,(D)] be the vector D-transform
of received sequence Z. Then the D-transforms of the trans-
mitted and received sequences are related by

Z((D) = Y(D)te(D) (13)

where e(D) = [¢,(D),...,e,(D)] is D-transform of error
sequence, henceforth called, simply, the error sequence.

From Eq. (12) the syndrome of the received code word is
S=Z°HT=e'B—2 (14)

This is a nonhomogeneous system of linear equations for the
unknown error sequence e(D). The problem of syndrome
decoding CCs is to solve this system of equations for e(D).
It was shown (Refs. 1, 6) that the general solution of Eq. (14)
is given by

e = uG+ZR (15a)
where

R=8 -8

] (15b)

with B, and Ig defined in Eq. (11).

Let e, replace e in Eq. (13) as the actual error sequence;
then a substitution of Eq. (13} into Eq. (15a) gives by Eq. (12)

e = uG+ZR = uG+(Y+ea)B—zB2 =uG+teR

which is independent of the transmitted codeword Y.

Using the solution (Eq. (15a)) of the syndrome equation an
estimate of the error sequence can be obtained from

el = min luG + ZR|| (16)

u

where || || denotes Hamming distance norm or weight and the
minimization is taken over all k-vectors u over F[D]. By
Eq. (16) the minimum weight error sequence is

€=uG+ZR = uG+eR (17)

where u is the k-vector with elements in F[D] for which the
minimum weight in Eq. (16) is obtained. It was shown (Ref. 1)



that # in Eq. (17) is a correction factor such that the original
message is estimated by

X=2-6"'-u (18)
Substituting Z = Y + e, into Eq. (17) yields
X=(Y+e)G' - =X+e, G =i (19)

Let £ be the set of all error sequences which can be decoded
correctly. Then, if e, ¢ E, the most likely error sequence
found by the minimization in Eq. (16) is equal to e,, and
therefore, by Eq. (19), u=e, G~!. Thus, the minimization
in Eq. (16) has only to be taken over those sequences u which
belongs to E(-D = {{i=e G~1: e e £}. Hence

el = min |luG +ZR|| (20)
uekE -

Note that if e, e £, the most likely error sequence found by
either Eq. (16) or (20) is identical and equal to e,.

In order to actually perform the minimization in Eq. (20)
over F(-1 the sets £ and £(-D must be identical. This is
generally impossible. However for systematic CCs, it was
shown (Ref. 6) that E(-1) can be approximated by the set

("1) = N
£} {u.WH(u].,... u

, ].+m)<t,forallj>0}

(21

where ¢ = [(dy, - 1)/2] and m is the length of memory. For

a more detailed discussion of the relation between E(-1) and

E(V, see Ref. 6. Thus, for systematic CCs, Eq. (20) becomes
el = min |luG +ZR|| (22)

ueE(l—l)

In order to take the minimization in Eq. (22) over E{~1, a
specific procedure was found to “prune” the error-trellis
(Ref. 6). Also it was shown (Ref. 6) that the number of states
S and transitions 7 needed for error-trellis decoding of an arbi-
trary systematic CC is

min {t,mk}

>

i=0

(’”,.") @-1' (23)

and

min {t,(m+1)k}

>

i=0

(D) -1y @

respectively. Note that the standard Viterbi decoding (Ref. 3,
Sec. 4.17) requires g™ states and g("*D¥ transitions within
a frame time.

In the next section error-trellis decoding is developed for an
important class of nonsystematic CCs, called dual-K CCs. The
dual-K convolutional codes were invented and developed by
Viterbi and Odenwalder. These CCs are nonbinary codes over
the field GF(2X) and are used in practice in channels which
experience fading such as UHF tropospheric scatter channels,
etc.

IV. Error-Trellis Decoding of Dual-K CCs

Dual-K (n,1) convolutional codes are of rate 1/n, of
memory m = 1, and with symbols in the finite or Galois field
GF(2X) (see Ref. 7). The generating matrix G is a special case
of Eq. (42), namely,

—GO Gl 1
G G
0 1
¢ = (25a)
GO Gl
b —
where
G, = [1,1,1,...,1]
(25b)
G, = [8,,:8,5 &)

with g, ; #0 and g,; € GF(2K) and the g,,'s are all distinct,
forl <j<sn.

From the above definition of a dual-K CC, it is readily veri-
fied that the minimum distance of the code isd = (2n - 1) and
the free distance is

= 2n (25¢)

free

Hence if no more than ¢ symbol errors occur in the first 2 code
word frames and 2:+1<d=2n-1 or t<n-1, then
those errors which occur in the first frame can be corrected. In
other words, the dual-K CC is a t-error-per-block-length-
correcting CC where

d, -1
t=[(f—ree2—)]=n—l

and [x] denotes the greatest integer less than x.
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If error-trellis decoding is applied to the dual-K CCs, then
from Eq. (20) the most likely error sequence € is found as
luG + ZR ||

llell = min (25d)

ueE

In Appendix A it is shown that (-1 can be approximated by
the set

ECD = - w W, u <t forallj >0}
HYj

o)
(25¢)

Thus error-trellis decoding of dual-K CCs is performed by
taking the minimum in Eq. (25d) over the set E(-1 in Eq.
(25¢). But by Eq. (21) this set is equal to E(l“l) which is used
in Eq. (6) also for systematic CCs. Therefore, the trellis can be
“pruned” using the procedure in Eq. (6), and also the number
of states and transitions within a frame time is as given in
Egs. (23) and (24). Consider the example by Odenwalder
(Ref. 7, Fig. 1).

Example 1. Let the Galois field GF(23) be generated by the
polynomial x3 +x2 + 1, irreducible over GF(23). If a is a root
of this polynomial, then

3 6

02,03, a® = 1+a+a?,d’

=1l+a,a
=1+a,a’ =1,and0

are the eight elements of GF(23). The generating matrix of
type Eq. (6b) for a rate 1/2, dual-3 CC is

G = [1+D,1+aD] (262)
The output of encoder in terms of input is
Y = [Y,,Y,] = X[1+D,1+aD]. (26b)

If one applies elementary column operations to G in Eq.
(25b), it is not difficult to show that

1+D, 1+aD

G = [1,0]

is the Smith normal from Eq. (10). Hence

1+D, 1+aD
B = (27a)
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a3,a2 +a°D

B! = (27b)
o?, 0% +a?D
are the matrices needed in Eqgs. (11a) and (15b).
(az ta’D
R=BB, = (1,a]
_0‘2 +a’D
[—oﬁ +a’D,e® +a*D
= (28)
| o> +a’D,e® +a®D

is the matrix R needed in the error-trellis solution, Eq. (15b),
of the syndrome Eq. (14). From Eq. (25¢), d;,, =4 and
hence, the present dual-3 code will correct at most 1 symbol
per block length of 2. From Eq. (24), the number of transi-
tions in one frame time needed in the error-trellis is

1
((m rl)k)(q_l)i - Z (f),(g_l)i =15

i=0

1
T =
i=0

For the standard decoding trellis g(m+Dk = 82 = 64
transitions are required. This yields a fractional reduction of
15/64 = 1/4 in the number of transitions needed for error-
trellis decoding between that required for standard Viterbi
hard decoding. Also from Eq. (23), the number of states is

1 1
s=3 (’”f) (q—l)'fz(ﬁ) (8-1) = 8

i=0 i=0

which is equal to the number of states of Viterbi decoding,
ie.,qgmk =8,

The “pruned” error-trellis is shown in Fig. 1. And the con-
struction of the trellis is described in the following. The labels
on the pruned error-trellis shown in Fig. 1 correspond to the
solution, Eq. (15a), of the syndrome equation for the actual
error equal to the all-zero sequence. That is,

e =le,e] =uG =u{l+D,1+aD}

{u+Du,u+aDu} (30)

is the output of the trellis. For example, at frame time j and
state 0 if u =a?, then e = [a* + 0, a* + & + 0] = [a?,a?] is



the label on transition from state 0 to state a*. Such a transi-
tion represents an attempt to ‘“‘cancel” a simple error in the
error-trellis equation, Eq. (15a). If such an error does, in fact,
occur at frame j, then no further errors are allowed to occur at
frame j + 1. Thus a transition to other than state zero must be
followed by a transition back to state O in the next frame as
shown in Fig. 1.

Next suppose a transition to state ot occurs, ie., Du=
a?. Then since u = 0, the transition from state Du = a* back
to O is given, using Eq. 30) by e = [0 +a®,0+a - a*] =
[«*, a®]. The remaining labels to the “pruned” error-trellis
are obtained in a similar manner.

To illustrate error-trellis decoding of the dual-3 CC let the
generating sequence be ‘

X(D) = 1+aD (31)

Then the code word sequence is by Eqs. (7) and (26b)

YD) = X(D)GD) = [1 +a°D +aD?, 1 +a?D?]
Next, let the actual error sequence be e,(D) = [D?, a] so that
Z(D) = Y(D)+e, (D) = [1 +a°D+e°D?,a° + a?D?]

(32)
Hence by Eq. (28),
o® +a63D,o® +a*D

ZR = [1+a°D+a°D?,0’D?]

o2 +a?D, o +a’D

= [@®,0*] +[o,a*] D+ [o?,&’] D+ [@®,a*] D°

(33)

The finding of the minimum weight error-path e(D) in
terms of u(D) as given by Eq. (17) is equivalent by Eq. (152)
to finding the code word u(D) G (D) which is closest to Z(D) *
R(D) as given in Eq. (33). Hence the minimum-weight error-
path can be found by applying the Viterbi decoding algorithm
(Ref. 3) to the pruned error-trellis in Fig. 1. To accomplish
this, the frames of ZR in Eq. (33) are added to the output uG
in the pruned error-trellis in Fig. 1 as shown in Fig. 2.

In order to illustrate the Viterbi algorithm as applied to the
pruned error-trellis suppose the decoder has reached frame 4.
The output of the transition from state 3 to 0 is

[013,014] + [a3,a4]

[0,0]

Coef [u(D) » G(D) + Z(D) R(D)]

D3

with Hamming weight 0. A similar calculation for the other 7
possible transitions shows that the transition from a3 to 0 is
the only one with Hamming weight 0. The path segment from
a3 to 0 is chosen since it has minimum weight.

At frame 5, Fig. 2, the minimum weight estimate of the
D-transform of the error sequence is €(D) = [0, a} + [1,0] D2.
Hence the estimate u(D) of the message correction factor
which achieves e(D) is

n=a+a3D? (34)

Finally, using Eqgs. (27), (32), (34) in Eq. (18) yields, by
Table 1,

X =26""-u

o3, a® +a3D

=7 (1) -1
a2,oz2+a2D
o3
=[1+a°D+ D% a° +a*D?)]
o2

- [0 +a’D?] = 1+aD

the original encoded message in Eq. (31).

V. Recursive Algorithm for Error-Trellis
Syndrome Decoding of Convolutional
Codes

For the dual-3 CC described in Sec. IV, error-trellis decod-
ing of CC is used to correct one error in every £ frames. For
this example a recursive algorithm is developed to determine
the path with minimum Hamming weight for every £ frames.

This recursive algorithm for the error-trellis syndrome decod-

ing of dual-3, rate 1/2, one-error-correcting nonsystematic

convolutional codes is described with a flowchart as shown

in Fig. 3.

The recursive algorithm is illustrated in example 1 of the
last section. In this example, # = 1 and ¢ = 2. By Eq. (33)

ZR = ([?,0*], [®, %], [a?,0%], [&®,a%], [0,0])
(3%)
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In Eqg. (35), the first value of ZR is not equal to zero. Thus it
is assumed that one error occurs in the first two frames. To
find this error, the pruned error-trellis with a no-error output
u(D) G(D) in £ = 2 frames is computed. This partial trellis
is shown in Fig. 4. An error-trellis over these two frames is
created by adding the vectors [a3, a*] and [o3, o], succes-
sively, to all labels, in the pruned trellis in Fig. 4. This result-
ing error-trellis for these two frames is shown in Fig. 5.

In Fig. 5 one needs only to find the path with minimum
weight which ends up in state ¢ = 0 at the end of € = 2 frames.
Using Viterbi decoding the path with minimum weight is

([e, 01, [0, 0]).

Next, the input value following [e3, a*] and [a3, a?]
again is not equal to zero. Again it is assumed that only one
error occurs in the next two consecutive values of [a2, 013]
and [a3, a*]. These values are added again to the pruned
trellis of two frames given in Fig. 4 for generating an error-
trellis. Again using Viterbi decoding one finds the path with
minimum weight to be ({1, 0}, [0, 0]). Finally, the input
value following [o2?, &3] and [a3, &*] is [0, O]. Hence the
estimated error for these two frame times is [0, O}. Thus the
overall path with minimum weight is

¢ = ([0,¢], [0,0],[1,0], [0,0], [0,0])

As a consequence, the correction factor #(D) is #(D) =a3 +
a2D?. Hence, from Eq. (18), the estimated messageis X =1 +
aD. The same procedure applies similarly to a systematic one-
error-correcting Wyner-Ash CC presented in Ref. 5. In this
code,=m+1=2+1=3.

VI. A VLSI Design for Error-Trellis
Syndrome Decoding of Convolutional
Codes

In this section, a VLSI architecture is developed for the
recursive algorithm for error-trellis decoding of convolutional
codes presented in Fig. 3. This VLSI processor for selecting
the path with minimum Hamming weight is composed first of
d basic cells, where d is the number of paths in the error-trellis.
These d cells are followed then by a weight comparison cir-
cuit. A basic cell computes the path weight incrementally.
That is, if symbol A is not equal to symbol B, then the weight
of that particular path increases by one; otherwise, the weight
remains unchanged. The VLSI architecture of the error-trellis
syndrome decoder is illustrated in the following example.

The calculations used in the present example were given in
the last two sections. The VLSI architecture for this convolu-
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tional code is illustrated in Fig. 6. In this figure there are 8
basic cells corresponding to the eight possible paths in the
error-trellis. The function of each basic cell is described as
follows.

The ith basic cell corresponds to the ith path in 2 frame
times in the error-trellis. Thus if 4 is not equal to B, then the
weight of the ith path increases by one (otherwise it remains
the same) where A is the input value and B is the precalculated
value stored in the ith basic cell. In this example, A is (ZR),,
for (k=1,2,3,4),and Bis(u - G),, for (j=1,2,3,4), where
Z is the received code sequence, R is defined in Eq. (28),u is
an arbitrary k-vector of elements in F[D], and G is the
generator matrix.

First the received code sequence Z is multiplied by matrix
Rand G-1,as shown in Fig. 7,to form both the input sequence
to the basic cells and the inverse of the received message, i.e.,
Z + G~!. The input sequence ZR is then sent to all the 8 basic
cells as well as a zero detector simultaneously. The inverse of
the received message ZG~! is sent then to a delay line to wait
for the completion of the set of operations needed to estimate
the correction factor &. Then Z « G-! is added to 4 to obtain
the estimated message ¥ by Eq. (18). The purpose of this zero-
detector is to check if the input vector ZR is zero or not. If
the two components are zero, then all the outputs of the
weight comparator, which are described in the following, are
also equal to zero. This indicates that the estimated correc-
tion factor u is zero, i.e., no error has occurred in the received
code sequence Z. If ZR is not equal to zero, then the two
components of ZR, ie., [ZR,, ZR,], in the first time frame
are sent to the equality check circuit sequentially as shown in
Fig. 8. The TG,’s (for i = 1, 2, 3, 4) shown in Fig. 8 are 3-bit
registers. They are used to store the precalculated UG values
for the jth path. Since it requires only 2 frame times to choose
a minimum Hamming weight path, four registers are needed to
store #; » G. The reason for the use of 4 registers instead of
one in this design is to avoid a more complex sequential
computation of u* G.

The loading of the 7G,’s into the equality check circuit is
controlled by a 2-bit counter which is capable of generating
the required 4 different states. Because only 4 pairs of values
need to be checked in every 2 frame times, four clock cycles
are needed to finish the loading operation.

At the first clock cycle, ZR, and TG, are loaded into the
equality check circuit. At the next clock cycle, ZR, and
TG, are fed into the same circuit in sequence. The equality
check circuit is implemented by the XOR arrays and an OR
gate as shown in Fig. 9. For example, if ZR, is equal to TG,



then the output of the equality check circuit has logic level
zero;, otherwise it is one.

The output of the equality check circuit is sent to a 3-bit
counter which accumulates the weight of a path in the error-
trellis. After 4 clock-time, all the 4 pairs of the input sequence
Z-Randu;-G of each path on the error-trellis are compared.
The output of the 3-bit counter which is the calculated weight

of each path on the error-trellis is then sent to a weight com-
parator circuit. The weight comparator consists of Program-

mable Logic Array (PLA array). This is denoted by PLAI in
Fig. 10.

Also shown in Fig. 10 is an array of control gates and a
table-lookup PLA. The inputs to each PLA1 in Fig. 10 are
two 3-bit registers, W; and W, which denote the weights of
ith and jth path, respectively, in the error-trellis. The out-
puts of PLA1 are W, or W; depending on which is smaller, and
a 1-bit signal, LR, to indicate if W, is smaller than W,. If W,
is smaller than Wi’ then LR is zero; otherwise LR is one. The

PLAI’s are configured in a tree structure. The outputs of the
first level PLA1’s are sent to the second level PLAL’s as their
inputs and so forth.

For example, if W, is the smallest of all the weights, as
indicated in Fig. 10 at point 4, it is logic zero. This will turn
on gate T, and turn off gate T,. Then the value of C which is
zero will be transferred through gate T, to point B. Since W,
is the smallest value, the value at point D is zero. This turns
on gates T, and T, and turns off gates T and 7. Therefore
the values at points 4 and B, which are zero, together with
the value at D which is zero as well, are transferred to the
inputs of another type of PLA, labeled by PLA2 in Fig. 10.

The function of PLA2 is to form a mapping between the
path and correction factor #. Since there are eight different
paths in the error-trellis, there are, correspondingly eight
different #’s. Finally, the correction factor @& is added back
to ZG-1, by Eq. (18), as the estimated information X. The
estimated information X is then shifted out of this circuit
sequentially.
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Appendix A
Approximation of the Set E(—1) for Dual-K CCs

Let G-! (D) be a right inverse to the generator matrix (25b)
of a dual-K CC of length n. Then E(-=1) = {eG-!: ecE}. Define

(-1 — .
ETV = {u Wy, (u

l,uj+1)<t,forall/'>0}

(A1)

In the following it will be shown that E i“l) is a suitable
approximation to E¢-1). Since for ¢ > 2, E(-1 < ES"I) the
only nontrivial case is for ¢ = 1, that is for n = 2. It is readily
verified that

T
G-t = [ Tr2 il = (g,.8,]17
€, *8,,) &), *8,) e
(A-2)
is a right inverse matrix to the generator matrix of a dual-K CC

of length 2. Note that g, and g, are nonzero elements in
GF(2KX).

Since the dual-K CCs of length 2 are l-error-per-block-
length-correcting CCs, the set of sequences

= {v: Wy, (v Vi )<1 forallj =0}
(A3)
is a desirable approximation to £. Thus
ECD = [p=vG1:veE} (A4)

is an approximation to £ (-1), Also from the following lemma,
one has that E¢-1D = E{-1.

Lemma. Let n =2, then E(-1) = Eﬁ"l).
Proof: Let u(D) e E¢-1). Then
u(D) = Z u, «Dl = yD)-G!
=0

where v(D) € E. And from (A-2)

uD) = 3 y;-v) D [g,.8,17
j=0

E @,;8* szgz)Dj

j=0
Thus,
Wy (Ut ) = wy (0,8, 49,,8,,7,,, 8ty 8,)

<
Swy (V8,5 V540 8107585 V541 &)

T Wy (Vlj’ l’1;’+1’V21"V2j+1)

= wy, (v,,v,)<1
From (A-3), since v(D) € E, this implies that £ C E 1('1).

To show that E( D ¢ ECD, et u(D) ¢ E( D construct

the sequence V(D) =, D), v (D)) (g u(D 0). Since

* u(D) € E( D it Follows from (A- 3) that v(D) is in E.
Hencev(D) G' =p(D)* [gl,gZ]T—u(D)lsmE( .
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